Linux.conf.au 2011

Saving Money with Misterhouse, having a smart house, and other neat tricks

http://marc.merlins.org/linux/talks/MisterhouseUseCase/

Marc MERLIN marc soft@merlins.org

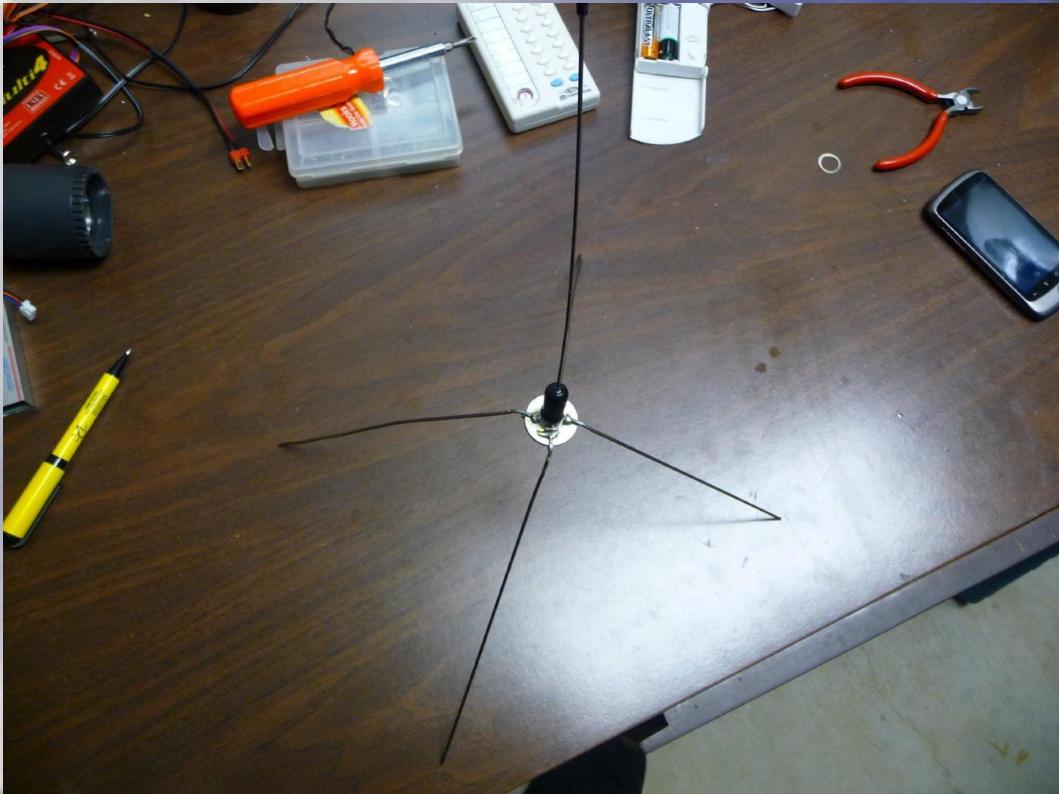
Quick Outline

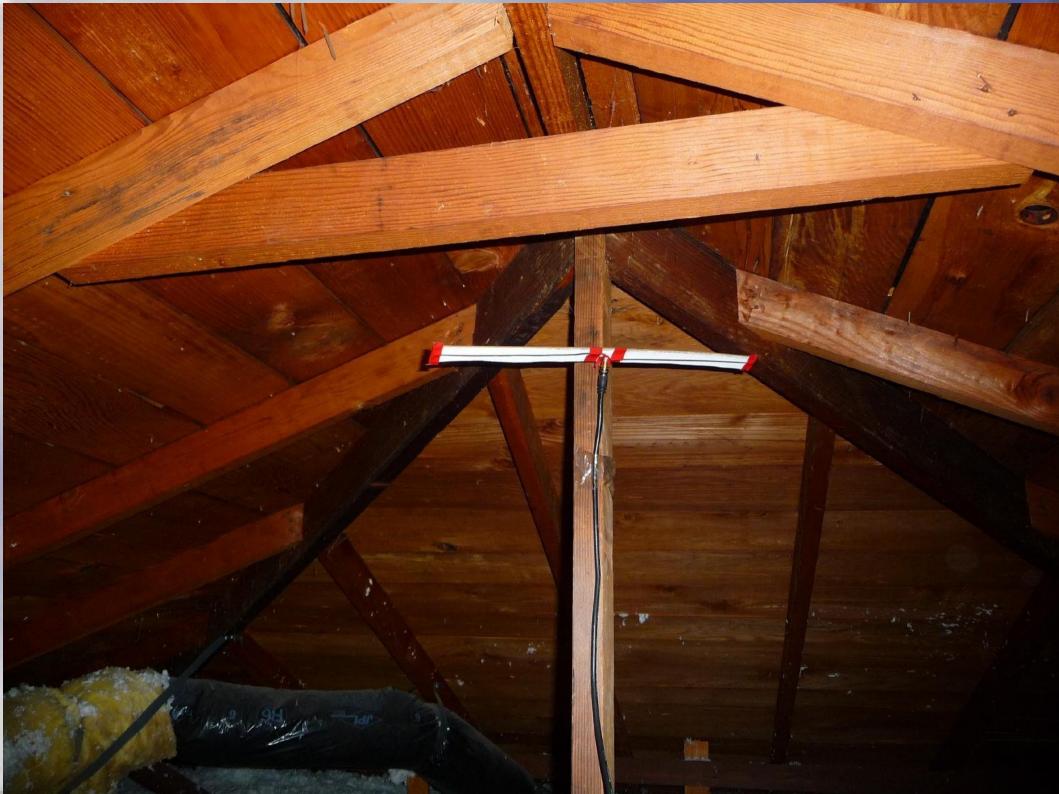
- Misterhouse overview.
- Home automation wire solutions: X10, Instean, Zwave.
- Other HA protocols: 1-wire, XPL.
- HAI RC-xx and Omnistat2 thermostats.
- Power monitoring: Brultech ECM-1240
- Misterhouse and perl programming.
- Putting it all together: running home made AC with misterhouse, on demand closet cooling, watering plants when need be.
- Teach your cat(s) to respect your authorita!
- Graphing with cacti.

Misterhouse Overview

- Misterhouse was written about 10 years ago to allow for complex home automation.
- Based on perl.
- Multiplatform (Linux, Mac, Windows).
- Works on small router like devices (MIPS, ARM, etc...).
- Went from few protocols to supporting almost all open protocols.
- > Helpful user base on misterhouse-users@lists.sf.net

Powerline Home Automation Solutions


- Where it all started: X10
- Insteon is "X10 mostly done right".
- Phase Coupling/Bridging (X10 bridge booster, or Insteon Wireless Bridges).
- > Z-Wave "look ma, no wires", but not plug and play.
- UPB, and others,
- Backup solution: Toggling plugs with 1-wire network or serial port.


X10

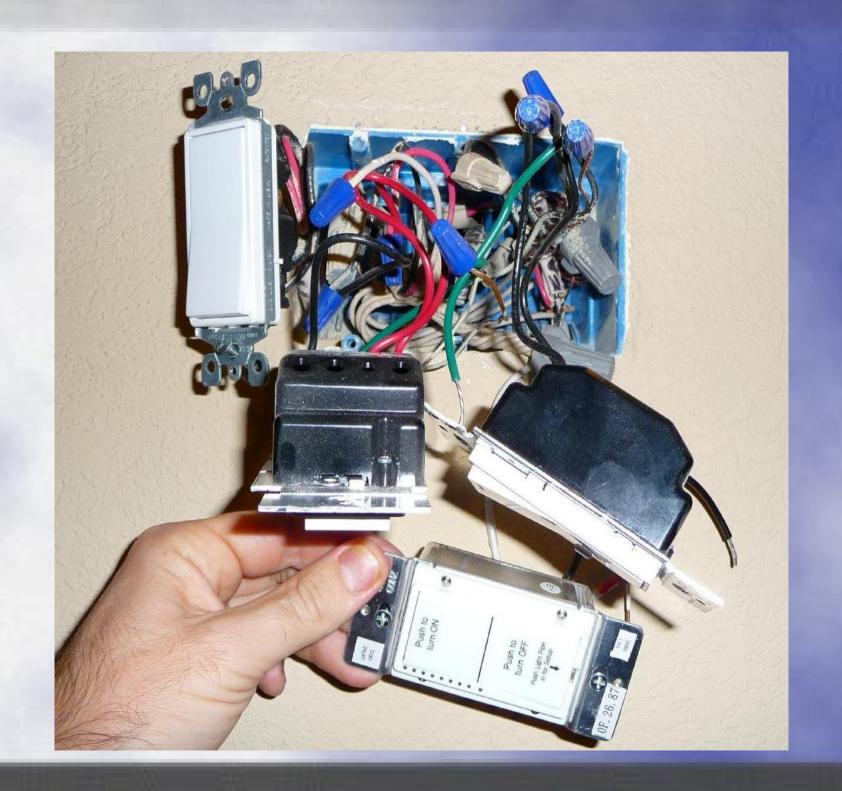
- Very simple, A1-A16 .. P1-P10 codes.
- Devices typically only send or receive codes (insteon devices do both).
- Basic X10 protocol does not allow state queries.
- > X10 is broadcast, there may be N unknown listeners.
- > X10 does not have acknowledgement or resends (RF can have some resends).
- Some vendors have extended X10 codes which allow for custom dim levels, or state queries.
- > X10 can requires a phase bridge and amplifier.
- Devices like CM11 allow reading and sending powerline codes.

X10RF

- > X10RF is a separate protocol in the 310Mhz range (US), which needs to be gatewayed to the powerline.
- > X10RF shares X10 codes, N devices may receive or send on a given code.
- Basic X10RF gateways only listen on one house code, making gatewaying of many devices cumbersome.
- Better X10RF receivers exist to receive codes directly on a PC via serial port (CM26a, W800, or rfxcom).
- Bypassing the power line can save 2 seconds on code reception.
- Depending on sender, code is sent 2 to 6 times to help with RF noise.

X10sec

- > X10sec is also in the 310Mhz range, but a different protocol (4 bytes).
- CM26a won't decode it, but W800 and rfxcom will.
- Mostly used by DS10a security sensors for doors & windows.
- Works fine for monitoring your mailbox being opened :)
- Signal is sent 3 times and current state resent every hour just in case.
- Low battery bit is included in protocol.




```
my %x10secstate;
my $x10sec timers;
my $x10sec inactivity;
my sopen timer = 10 * 60;
my $inactivity timer = 3600*24*7;
foreach my $dev (["x10sec garage1", "Main Garage Door"], ["x10sec garage2", "Small
Garage Door"], ["x10sec mailbox", "Mailbox"]) {
    $obj = &::get object by name($obj);
    $x10secstate{$obj} = $obj->state if (not defined $x10secstate{$obj});
    if ($obj->state now) {
      my $oldstate = $x10secstate{$obj};
      my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime();
      $year += 1900; $mon++;
      print log "X10SEC: $name is ".$obj->state." (was $oldstate)";
      open(LOG, ">>/var/log/x10sec");
      printf LOG ("%.4d/%.2d/%.2d %.2d:%.2d:%.2d $name: ".$obj->state." (was
$oldstate)\n", $year,$mon,$mday,$hour,$min,$sec);
      close(LOG);
      if ($obj->state ne $oldstate) {
          if ($obj->state =~ /alert/) {
             system('date | Mail -s "'.$name.' Just Opened" EMAIL');
             # little hack to trick the mh parser, or it'll try to define
             # $x10 sec timers->{$device} as a timer and fail.
             my $newtimer = new Timer();
             $x10sec timers->{$obj} = $newtimer;
             $x10sec timers->{$obj}->set($open timer);
```

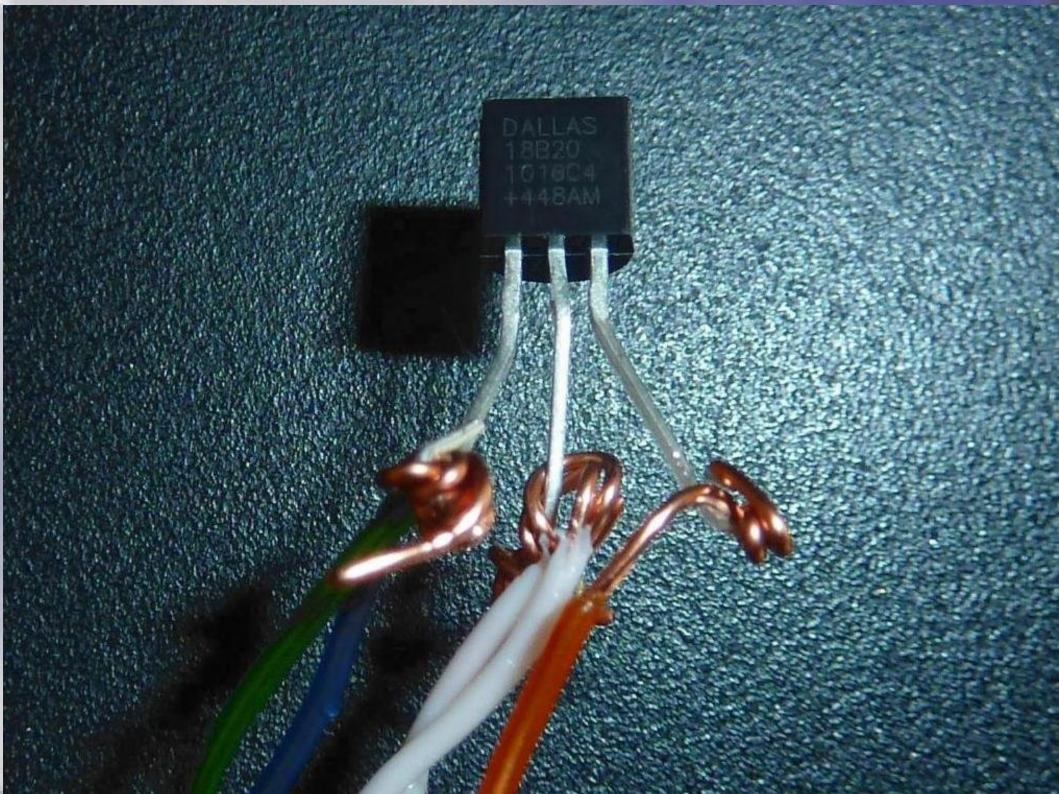
```
my $newtimer2 = new Timer();
             $x10sec inactivity->{$obj} = $newtimer2;
             $x10sec inactivity->{$obj}->set($inactivity timer);
           } elsif ($obi->state =~ /normal/) {
             my $timer = "(unset)";
             if ($x10sec inactivity->{$obj}) {
                 $timer = (($inactivity timer/60) - $x10sec inactivity->{$obj}-
>minutes remaining);
             system('date | Mail -s "'.$name.' Just Closed after '.$timer.'mn"
EMAIL');
             $x10sec timers->{$obj}->unset if (defined $x10sec timers->{$obj});
             $x10sec inactivity->{$obj}->unset if (defined $x10sec inactivity-
>{$obj});
          } else {
             system('date | Mail -s "'.$name.' UNKNOWN STATE" EMAIL');
           $x10secstate{$obj} = $obj->state;
      }
    }
    if (defined $x10sec timers->{$obj} and $x10sec timers->{$obj}->expired) {
      system('date | Mail -s "'.$name.' open longer than '.sprintf("%.1f",
$open timer/60).' mn" EMAIL');
    if (defined $x10sec inactivity->{$obj} and $x10sec inactivity->{$obj}->expired)
{
      system('date | Mail -s "'.$name.' inactive too long ('.sprintf("%.1f",
$inactivity timer/3600).' hours)" EMAIL');
}
```

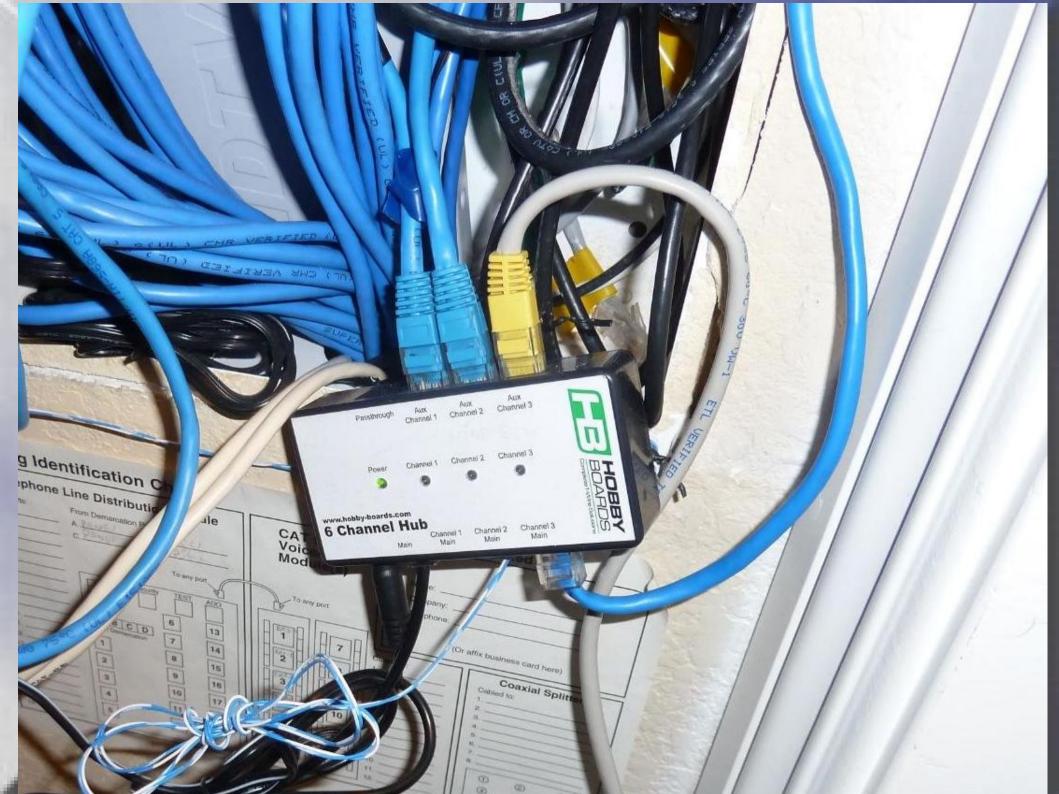
Insteon

- Insteon is X10 mostly done right. It uses 5V DC signaling like X10 and can read/send X10 codes too.
- One 6 byte address per device.
- Commands are sent to one or more devices and acknowledged.
- Each device resends data received synchronously for better range.
- > Data is resent 3 times to work around powerline noise.
- Phases are bridged with RF access points, and they can also be used to jump across a UPS or decoupled line.
- > Requires a neutral wire to power the switch.
- No support in Australia New Zealand :(

Interfacing Insteon with Misterhouse

- Loads of instructions I wrote are here: http://misterhouse.wikispaces.com/Insteon
- Interfacing with a computer uses a PLM (power line modem), or part 2412/3 from smarthome (serial or USB).
- Commands aren't fire and forget, they require queuing, ack processing, and resends.
- You can't just easily send commands from cron, and that's where the misterhouse insteon code comes in play.
- > Switch to switch links can be programmed in misterhouse and mass-sent to all your switches instead of painstakenly programmed locally.
- Misterhouse keeps track of switch status updates.


Z-Wave


- > Z-Wave has wireless communication only.
- Does not require a neutral wire.
- More expensive than Insteon.
- More companies support it, but not all the same way. A switch that reports toggles costs twice as a much as one that doesn't.
- Complicated to setup, requires a master controller programmer and star/bridge programming.
- > Supported by misterhouse, but little documentation.

1-wire

- > 1-wire was initially meant for embedded devices and cars: ground plane and one 1 signal wire.
- > 1-wire is more reliable/faster with a 3rd wire for 5V
- Some 3rd party 1-wire devices also require 12-24V.
- Bus topology, not star, unless you use a hub or loop the signal wire back a Cat-5 pair.
- http://marc.merlins.org/perso/linuxha/post_2009-12-23_Temp http://marc.merlins.org/perso/linuxha/2009-12.html
- > 1000ft limit, more or less
- > 1-wire interface is DS2490 (USB) or DS9097U (serial)
- They can be read with owfs or digitemp

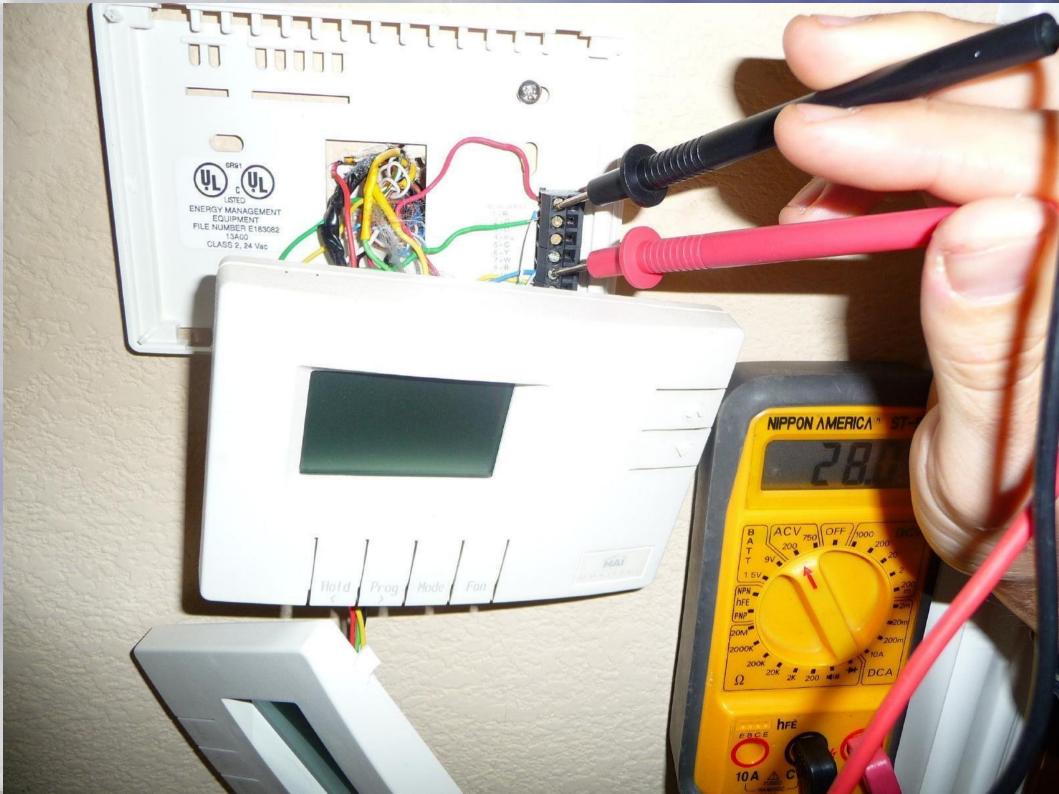
Misterhouse 1-wire interfacing.

- At least 4 ways to do it: xAP, xPL, Owfs.pm, and cacti_owfs script.
- Avoid all solutions where read(1) can block.

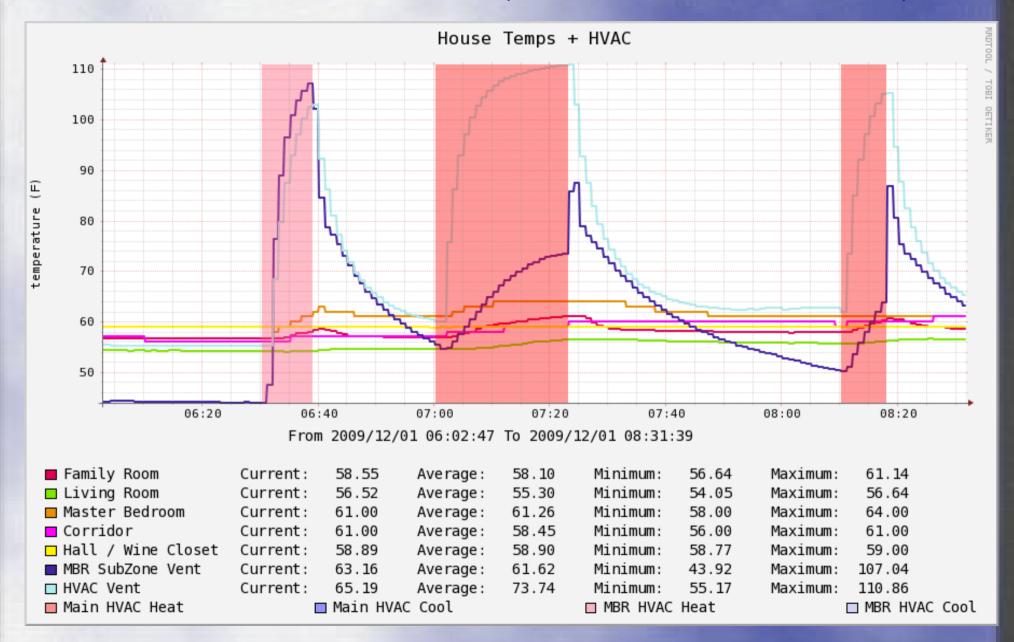
```
Reading owfs value saved to log file (non blocking):
if (new minute) {
    $var = cacti owfs --value Family Room;
    chomp($var);
    if ($var eq "U") {
      $Weather{TempIndoor} = undef;
      print log "MYLOG7: Weather: could not set family room temperature(undef)";
    } elsif ($var =~ /\d+/) {
      $var = int($var);
      $Weather{TempIndoor} = $var;
      #print log "MYLOG7: Weather: set family room temperature to $var";
    } else { die "Could not get family room temp"; } }
Or using xPL support in mh when running owfs and xpl-owfs to broadcast values:
XPL SENSOR, bnz-owfs.*:28.998D4D020000, computer closet temp, , temp
my $compcloset temp = $computer closet temp->state();
if ($compcloset temp > 85) {
    $compcloset fan->set(ON);
   print log "MYLOGC: Computer closet: turning fan on (temp $compcloset temp)";
```

Wireless: Oregon Scientific WMR200

- When running wires is impractical, wireless weather solutions exist. WMR200 is the cheapest.
- Not the best in class, but wind speed, wind direction, outside humidity and temp, rainfall, indoor humidity/temp/baro plus console for \$200.
- WMR200 console can be connected via serial port
- Rfxcom 433.92Mhz receiver or 433.92/310Mhz dual band for X10 too.
- Console is limited, but extra senders are cheap (baro/temp/humidity for \$40) and many can be received on a PC.
- Be careful, many sensors can be almost in sync and drift into periods of overlap.


XPL

- > XPL is a network protocol to broadcast sensor data
- Can be used to broadcast owfs/1-wire data (xpl-owfs)
- W800 can be read directly in mh or via xpl-w800
- Rfxcom (required for WMR 200 data packets) only works with xpl-rfxcom or Iranger's rfx-xpl.
- http://misterhouse.wikispaces.com/X10RFX10SecRFXCOM


```
STR918, WGR918 addr: 232, chan: 0 wind: 33 ° NNE, speed 1.20 m/s / 2 kts average 1.00 m/s
/ 1 kts battery level 100%
RGR126, RGR682, RGR918 addr: 147, chan: 0 rain: total 1157 mm, 0 mm/hr, count 9
STR918, WGR918 addr: 232, chan: 0 wind: 48 ° NE, speed 1.60 m/s / 3 kts average 1.00
m/s / 1 kts battery level 100%
THGR918 addr: 225, chan: 1 temp: 23.70 °C / 74.66 °F hum: 43 % comfort battery level 80%
STR918, WGR918 addr: 232, chan: 0 wind: 49 ° NE, speed 1.60 m/s / 3 kts average 1.00
m/s / 1 kts battery level 100%
BTHR918N,BTHR968 addr: 230, chan: 0 temp: 26.50 °C / 79.70 °F hum: 45 % normal baro:
1014 Hg / 29.94 inHg, forecast: partly cloudy
STR918, WGR918 addr: 232, chan: 0 wind: 42 ° NE, speed 2.20 m/s / 4 kts average 1.00
m/s / 1 kts battery level 100%
THGR918 addr: 225, chan: 1 temp: 23.70 °C / 74.66 °F hum: 43 % comfort battery level 80%
STR918, WGR918 addr: 232, chan: 0 wind: 357 ° N, speed 1.40 m/s / 2 kts average 1.00
m/s / 1 kts battery level 100%
RGR126, RGR682, RGR918 addr: 147, chan: 0 rain: total 1157 mm, 0 mm/hr, count 9
```

HAI Thermostats (RC-80, Omnistat2)

- HAI is a great company with hardware that's simple to communicate to, and published specs and protocols.
- Compatible with any 24VAC furnace/HVAC system.
- Serial port support, including serial port sharing.
- Old RC-80 stats are around \$50 on ebay, a bargain.
- New Omnistats2 are fancier, prettier, and compatible with the misterhouse support code too.
- Full heating/cooling schedule can be remotely programmed from a web page.
- Heating/cooling/fan status and setpoints can be read and sent
- Reading allows for controlling booster fans from mh.

HAI Thermostats (RC-80, Omnistat2)

Interfacing HAI stats and Misterhouse

```
# update data once a minute, per omnistat offset seconds.
if ($New Second and $Second eq $omnioffset[$omnistat]) {
    # we make the extended group1 call that also retreives the stat's output status
   my ($cool sp, $heat sp, $mode, $fan, $hold, $temp, $output) = $omnistat[$omnistat]-
>read group1("true");
   my $stat type = $omnistat[$omnistat]->get stat type;
    # This mashes $hold and $mode together from registers cached in the group1 call and
outputs a combined string
    $mode = $omnistat[$omnistat]->get mode;
   Omnistat::omnistat log("".$omniname[$omnistat]." Omnistat $stat type: Indoor temp
is $temp, HVAC Command: $output, heat to $heat sp, cool to $cool sp, mode: $mode");
    # only store the temperature from the first stat (which we'll assume is master)
    $Weather{TempIndoor} = $temp if ($omnistat == $omnilist[0]);
if ($state = $v omnistat fan[$omnistat]->said) {
    $omnistat[$omnistat]->fan($state);
if ($state = $v omnistat cool sp[$omnistat]->said) {
    $omnistat[$omnistat]=>cool setpoint($state);
    speak "Air conditioning set to $state degrees for $omniname[$omnistat] Omnistat";
   Omnistat::omnistat log("$omniname[$omnistat] Omnistat: Air conditioning set to
$state degrees", 2);
```

Power Monitoring: Brultech ECM1240

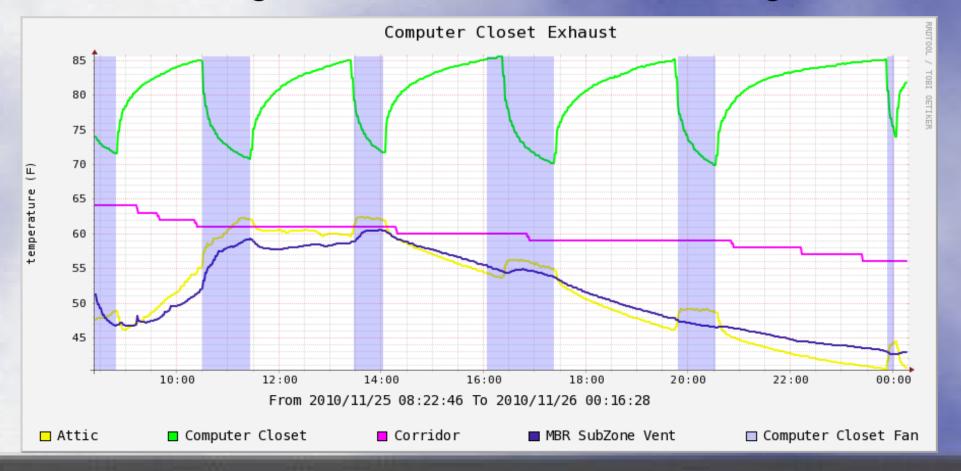
- Uses an AC to AC converter to pick up phase offset between current and voltage (power factor).
- > 120 and 240V compatible.
- Can sample 7 currents, 2 of which directional.
- Lots of CTs (current transducers) to chose from.
- > Serial, ethernet, or Zigbee (wireless) interface.
- Cheap (starts around \$200).
- Needs windows to configure, but platform independent python code to query the data (up to once a second).

ECM1240 Logs

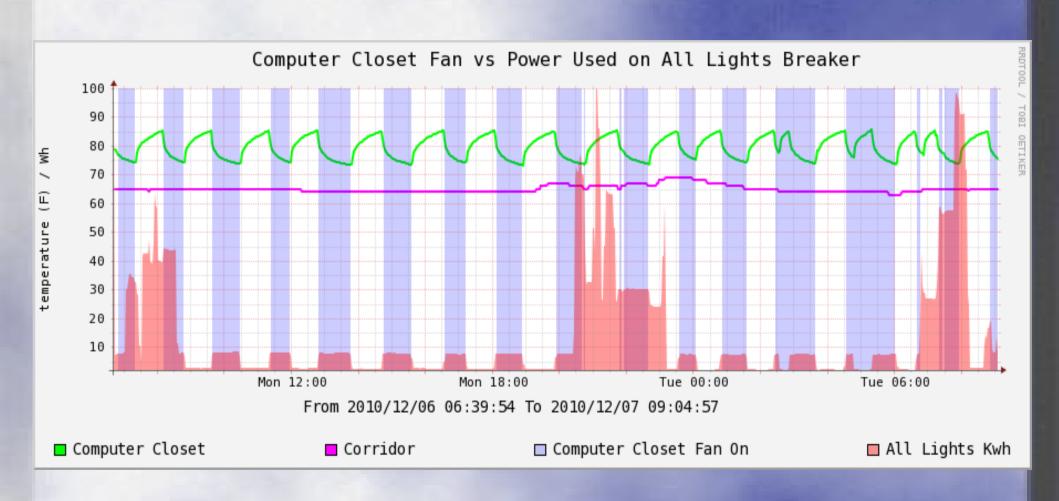
- Samples Voltage and 7 Watt.second counters
- The 2 main channels count amps in both directions (solar panels).
- Multiple CTs can be linked to one channel (house lights).

```
2010/05/28 20:00:21: Volts:
                                        120.00V
2010/05/28 20:00:21: Ch1 Watts:
                                         -2.104KWh ( 1995W) < PG\&E
2010/05/28 20:00:21: Ch1 Positive Watts:
                                         78.890KWh (1995W)
2010/05/28 20:00:21: Ch1 Negative Watts:
                                         80.995KWh (
                                                       0W)
2010/05/28 20:00:21: Ch2 Watts:
                                       -140.897KWh (
                                                     -14W) < PV
2010/05/28 20:00:21: Ch2 Positive Watts:
                                          0.012KWh (
                                                       0W)
2010/05/28 20:00:21: Ch2 Negative Watts: 140.909KWh ( 14W)
2010/05/28 20:00:21: Aux1 Watts:
                                         40.387KWh (306W) < Computer Closet
2010/05/28 20:00:21: Aux2 Watts:
                                         31.272KWh (
                                                      200W) < MythTV/AV System
2010/05/28 20:00:21: Aux3 Watts:
                                          4.456KWh (
                                                      51W) < Computer Office/BR4
2010/05/28 20:00:21: Aux4 Watts:
                                          0.000KWh (
                                                       0W) < AC
2010/05/28 20:00:21: Aux5 Watts:
                                          8.665KWh (
                                                      20W) < Kitchen Fridge
```

Ok, great, so why all this?


- Ok, we're geeks, we interface things just because we can:)
- But it's better if you have a plan of what you're going to do with the data:
 - Graph it and look at trends, find spikes/problems
 - Correlate electricity use with certain controlled loads
 - Control sprinklers when your grass humidity sensor says you should, and you haven't detected rain.
 - Control fans based on room temperature
 - Correlate computer closet temp and electricity use with raid checks or kernel rebuilds
 - Control lights on based on motion sensors, time of day, and counting overrides from local switches.

Computer Closet Temperature Control


```
my slast compcloset temp = 200;
if (new second 122)
  my $compcloset temp = $computer closet temp->state();
  my $tempdiff = $last compcloset temp - $compcloset temp;
  my $state = $compcloset fan->state;
  if ($compcloset temp < 75) {
       $compcloset fan->set(OFF);
       print log "Computer closet: turning fan off (temp $compcloset temp)";
  if ($compcloset temp > 85) {
       $compcloset fan->set(ON);
       print log "MYLOGC: Computer closet: turning fan on (temp $compcloset temp)";
  } elsif ($compcloset temp < 80 and $tempdiff < 0.01) {
       $compcloset fan->set(OFF);
       print log "MYLOGC: Computer closet: turning fan off because it's not cooling
anymore (temp $compcloset temp and tempdiff is $tempdiff)" if($state eq ON);
  } else {
       print log "MYLOGC: got computer closet temp $compcloset temp, last was
$last compcloset temp and diff is $tempdiff. Fan state is $state";
  $last compcloset temp = $compcloset temp;
```

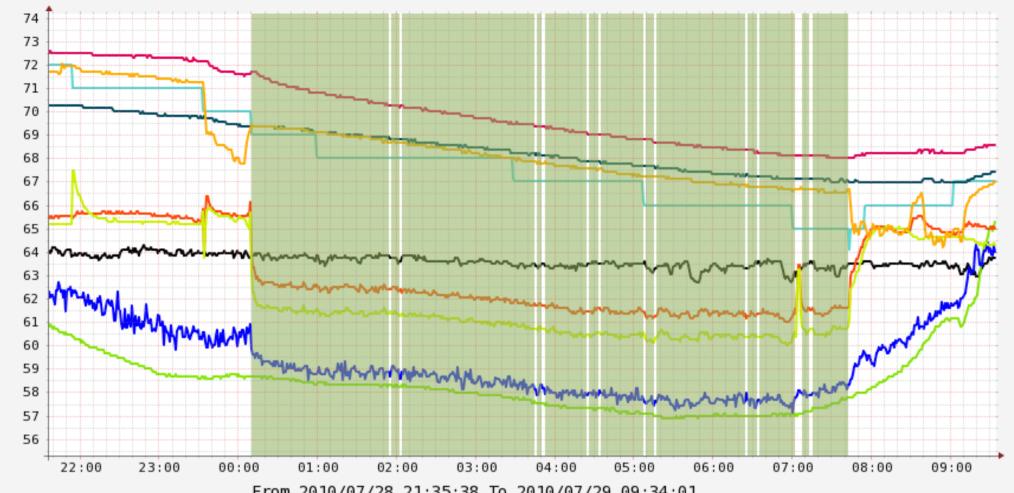
Computer Closet Temperature Control

- Why cool all the time as opposed to only when needed?
- In winter, house may be cool enough for passive cooling.
- Active cooling can be done in waves, like a fridge.

Composite graphs

Cooling with Outside Air

- Automating opening windows and doors to get cool air inside at night.
- Without opening your doors and windows for security reasons.
- > Only if inside outside > 5°C.
- Only if tomorrow is going to be warmer than X.
- Only if AC isn't already running.
- Oh, and how about managing 2 zones and resulting air pressure issues?



Cooling Code

A bit long to paste here, so find it on its web page: http://marc.merlins.org/perso/linuxha/2010-08.html

http://marc.merlins.org/perso/linuxha/2010-08.html#Booster-Fans-and-Heating-Cooling-with-Outside-Air-with-Misterhouse

Cooling with Outdoors Air

Temperature (F)

■ FMR Booster Fan On

From 2010/07/28 21:35:38 To 2010/07/29 09:34:01

	110111 2010/07/20	21.55.50	10 2010/07/25 05.54.01					
■ Crawlspace	Current:	63.62	Ave rage :	63.59	Minimum	62.71	Maximum:	64.28
□ Outdoors by Roof	Current:	65.61	Average:	58.41	Minimum	56.86	Maximum:	65.63
Outdoors by Crawlspace	Current:	64.27	Average:	59.32	Minimum	57.13	Maximum:	64.38
Main HVAC Vent	Current:	70.36	Average:	66.44	Minimum	62.66	Maximum:	73.97
■ FMR Vent	Current:	64.96	Ave rage:	63.12	Minimum	61.02	Maximum:	66.37
■ MBR Vent	Current:	64.39	Ave rage:	62.40	Minimum	60.02	Maximum:	67.46
■ Master Bedroom	Current:	67.00	Ave rage:	67.77	Minimum	64.07	Maximum:	72.00
■ Living Room	Current:	67.44	Ave rage :	68.33	Minimum	66.99	Maximum:	70.25
■ Dining Room	Current:	68.56	Ave rage :	69.83	Minimum	68.00	Maximum:	72.60
☐ Family Room	Current:	66.99	Ave rage :	68.10	Minimum	64.20	Maximum:	72.02

□ Dampers Opened to Outside Air

Teach the stupid cat some manners

- Sneaky cat knows he can't go on the kitchen counter, but he also knows he won't get caught by us at night.
- Motion sensor to detect movement at night and turn the lights on.
- Use webcam to monitor the vulnerable kitchen counter
- Use motion(1) to detect movement, but not light changes
- Tell motion(1) to run a shell script when appropriate movement is detected and trigger misterhouse code.
- Misterhouse code turns blender on and loud sound
- Profit!

Teach the stupid cat some manners!

AUTHORITAH

It's what sets apart a lard-butt in a State-issued costume from his lard-butt brethren

Smart designs

- > Supplement, not replace thermostat and light switches (kind of nice to be able to turn lights on when your controlling computer is down).
- Have a "wife override":) (it will break when you're not home).
- More generally, allow local control and programming that can be taken over by the computer when it works.
- Is your fish or your cat going to die if something fails when you're not home?
- Why not use arduino?
- Think about maybe selling the place one day: how much will still work without your master controller?

Misterhouse programming tips

- Code gets integrated in main misterhouse event loop.
- Any hang of more than 1sec is bad. It can drop event/alarm driven data like Insteon ACKs. Do not use sleep.
- my \$var=1 is tricky, it gets taken out of the loop for my, and =1 does not get re-applied each time around. Prefer my \$var; \$var=1 on the next line.
- Foocmd() #noloop
- #noloop=start
- cmd1; cmd2
- #noloop=stop
- print_log("Foo without newline") goes to mh/data/logs/print.log
- print_log("logs/foo.log mymesg") goes to mh/data/logs/foo.log

Example blend of MH calls and syntax:

```
my $mhsend = '/var/local/src/misterhouse/mh/bin/mhsend';
my $alarm = '/var/local/scr/alarm';
print log("MYLOGCAM: Sunset") if (time now("$Time Sunset"));
print log("MYLOGCAM: Sunrise") if (time now("$Time Sunrise"));
if (new second) {
   mv $backups = 60*24*7; # 10080
    if ($Second eq 0){
      system("cd $CAM1; cp $img '$img.sav'; savelog -c $backups -l -q -d $img; mv
'$img.sav' $img");
    if (($garage1 neon kpl->state eq ON) or ($garage2 neon kpl->state eq ON) or
($garage_incandescent->state eq ON) or (time_greater_than("$Time Sunrise+0:30")
and time less than("$Time Sunset-0:45"))) {
      #print("MYLOGCAM: Taking picture with light present\n");
       system("bash -c 'cd $CAM1; $alarm 3 wget --user=foo --password=bar -0
$imgdl $cam1 url; mv $imgdl $img' &>/dev/null &") if ($Second % 5 eq 0);
    else # garage is dark
      # Once every 5 minutes.
      if ($Minute % 5 eq 0 and $Second eq 50){
          print log("MYLOGCAM: Taking picture after turning light on");
           $garage incandescent->set(ON);
           system("bash -c 'cd $CAM1; sleep 5; $alarm 3 wget --user=foo
--password=bar -O $imqdl $cam1 url; mv $imqdl $imq; $mhsend --run garage
incandescent off' &>/dev/null &");
```

References

- http://misterhouse.wikispaces.com/
- http://misterhouse.wikispaces.com/Insteon
- http://misterhouse.wikispaces.com/Z-Wave
- http://misterhouse.wikispaces.com/X10RFX10SecRFXCOM
- http://marc.merlins.org/perso/linuxha/post_2010-06-25_Rfxcom_-W800_
- http://misterhouse.wikispaces.com/xAP+and+xPL+-+Getting+Started
- http://marc.merlins.org/perso/linuxha/2010-08.html#Temperature_-moistu
- http://marc.merlins.org/perso/linuxha/post_2009-12-23_Temperature-mon
- http://marc.merlins.org/perso/linuxha/post_2009-03-16_Insteon-Setup-and
- http://marc.merlins.org/linux/cacti/

Thanks

- > Too many to name all, but a few:
- > Bruce Winter wrote the original code and maintained until 2005.
- Many like Gregg Liming (insteon and many others), David Norwood, Jim Duda, and many others from before my time playing with misterhouse.
- The rest of the misterhouse community for patches, and community help.

Questions?

This talk and documents:

http://marc.merlins.org/linux/talks/MisterhouseUseCase/