Linuxcon 2015 GO&[Q

Using Docker for existing installed OS and applications,
running half inside half outside the container

http://marc.merlins.org/linux/talks/DockerLocalDisk-L.C2015-JP/
http://goo.gl/PWjume (short link)

Marc MERLIN

marc_soft@merlins.org

F,

Another docker talk? Isn't everyone using docker already?

=illims; =gl Wl

o Asyrmyas

HANJIN BUDAPEST
PANAMA

With a cool logo like this, you have no excuse :)

*docker

Docker: the shipping container model

® Package your application once, make it work on any OS

® Profit!

Why Use Containers for security?

® Virtual machines are of course better separated and more
secure.

® But VMs require more resources, run their own kernel, duplicate
an entire system, and run slower than native.

® (Containers give separation of resources. Root in the container
IS reasonably protected from accessing resources outside.

® Containers also give control over CPU/memory/l/O resources

used by containers

Why was | not using containers and LXC?

® | had a TODO from 2011 to migrate to LXC, but never got
around to it.

® | don't want to maintain 2 or more operating systems (the
base system and each docker image's OS) for security
updates or local tweaks/patches

® (Containers weren't that secure back then, you could escape
them pretty easily.

® Setting them up wasn't trivial.

What does Docker offer over LXC?

® Standard images of linux distributions ready for use (if you
are ok with trusting them).

® A standard interface compatible across linux distributions
(shipping container model)

® |mages that can be modified at run time and rolled back to
their clean install state when restarted

® Network integration, virtual filesystems, data sharing

between containers, and better security out of the box

Docker: Security bits that come for free

® Docker does a good job of securing known bits to
prevent a container from accessing the host

® For /proc it uses bind mounts to disable dangerous
entry points:

proc
proc
proc
proc
proc
proc

on
on
on
on
on
on

/proc/asound type proc (ro,nosuid,nodev,noexec,relatime)
/proc/bus type proc (ro,nosuid,nodev,noexec,relatime)

/proc/fs type proc (ro,nosuid,nodev,noexec,relatime)

/proc/irqg type proc (ro,nosuid,nodev,noexec,relatime)

/proc/sys type proc (ro,nosuid,nodev,noexec,relatime)
/proc/sysrg-trigger type proc (ro,nosuid,nodev,noexec,relatime)

tmpfs on /proc/kcore type tmpfs (rw,nosuid,mode=755)
tmpfs on /proc/latency stats type tmpfs (rw,nosuid,mode=755)
tmpfs on /proc/timer stats type tmpfs (rw,nosuid,mode=755)

Docker protects device nodes

6d057d45e708: /dev# 1ls -1

total 0

lrwxrwxrwx
CYrw—-Yrw—-rw-

lrwxrwxrwx
drwxrwxrwt
CIW-Yw-rw-
lrwxrwxrwx
drwxr-xr-x
CIW—-Yrw—-rw-
drwxrwxrwt
lrwxrwxrwx
lrwXrwxrwx
lrwxrwxrwx
CIW—-Yrw—-rw-
CIW-Yw—-rw-
CIrw-rw-rw-

= e

PP R RPRRPNR NP RPN

1

6d057d45e708
6d057d45e708

fdisk: unable to open /dev/sda: Operation

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root

root 136,
root
root 1,
root 10,
root
root
root 1,
root
root
root 1,
root
root
root
root
root 5,
root 1,
root 1,

13
13

229

5

May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May
May

:/dev# mknod sda b 8 0
:/dev# fdisk /dev/sda

6d057d45e708:/dev# mknod sdal b 8 1

6d057d45e708:/dev# mount ./sdal /mnt
mount: permission denied

12
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

11:
21:
21:
21:
21:
21:

21

21

21

21

21

51
59
59
59
59
59

:59
21:
:59
:59
21:
21:

59

59
59

59
21:
21:

59
59

:59
21:

59

console

fd -> /proc/self/fd

full

fuse

kcore -> /proc/kcore
mqueue

null

ptmx -> pts/ptmx

pts

random

shm

stderr -> /proc/self/£fd/2
stdin -> /proc/self/£fd/0
stdout -> /proc/self/fd/1
tty

urandom

zero

not permitted

Docker protects processes, users, networking

6d057d45e708: /dev# ps auxww

USER PID %CPU $%$MEM VSZ RSS
root 1 0.0 0.0 3516 2472
start; /bin/bash

root 59 0.0 0.0 5704 4172
root 266 0.0 0.1 116296 10924
root 3897 0.0 0.0

6d057d45e708: /dev# route -n
Kernel IP routing table

Destination Gateway Genmask
0.0.0.0 172.17.42.1 0.0.0.0
172.17.0.0 0.0.0.0 255.255.0.0

Chain PREROUTING (policy ACCEPT 179K packets,
out

prot opt in
all -- =*

pkts bytes target
216K 14M DOCKER
match dst-type LOCAL

Chain POSTROUTING (policy ACCEPT 115K packets,

TTY

2952 1840 ?

*

STAT START
Ss Mayl0
S May1l0
Ss Mayl0
R+ 11:58

TIME
0:00

0:00
0:04
0:00

Flags Metric Ref

UG
U

0
0

11M bytes)

source
0.0.0.0/0

8342K bytes)

0
0

pkts bytes target prot opt in out source
15 1074 MASQUERADE all -- * !docker0 172.17.0.0/16
0 0 MASQUERADE tcp -- * * 172.17.0.40
Chain OUTPUT (policy ACCEPT 5832K packets, 352M bytes)
pkts bytes target prot opt in out source
72802 4778K DOCKER all -- =* * 0.0.0.0/0
match dst-type LOCAL
Chain DOCKER (2 references)
pkts bytes target prot opt in out source
8116 481K DNAT tcp -- !docker0 * 0.0.0.0/0

t0:172.17.0.40:80

COMMAND

/bin/bash -c /etc/init.d/apache2

/bin/bash

/usr/sbin/apache2 -D CONTAINER

pPs auxww

Use Iface
0 ethO
0 ethO

destination
0.0.0.0/0

destination
0.0.0.0/0
172.17.0.40

destination
1127.0.0.0/8

destination
0.0.0.0/0

ADDRTYPE
tcp dpt:80
ADDRTYPE
tcp dpt:80

Why didn't | try docker earlier?

® Docker came to make containers easier to install and deploy
everywhere

® Didn't address my use-case of containerizing an existing
already installed system.

¢ | didn't want to trust an outside linux image (beware: docker
image pull checksums aren't secure,this is being worked on)

® |f docker gets compromised and its images changed, the
fallout would be pretty horrible.

® | have a very customized Debian image, | didn't want to redo
all these changes in a new image I'd build myself from

scratch.

Why didn't | try docker earlier? (2)

® | don't want to waste disk and more importantly RAM by
having multiple slightly different copies of the same code and
multiple copies of similar shared libraries

® |t took me a long time to get custom apps working on my
base system and don't really want to do the work a 2™ time in

a fresh container

Sharing the same base image in the enterprise

Google uses the same boot image for the server and its
containers
® Easier maintenance and ensuring that everyone is using a
secure image
® Everyone is using the same version of libraries. This saves
memory and prevents version and API drift
® \When you upgrade the server image, all containers
automatically pick up the new image. This can be a huge

plus for maintenance efforts.

Which approach is best?

® Neither has to be the only correct solution

® Docker's default of image separation works for some and is
desirable in some cases like needing to run an old
application in a different version of the OS

® My approach of server image re-use has advantages we just
listed

® Docker lets you mix and match, so feel free to use the best

one for each application

Running applications half in and half out of a container

This is a great plus you get from my approach

You install your application as usual on the host system

Part of that application accesses raw devices and internal
networks you don't want to expose to the outside

So you run the backend on the server as usual

And run the untrusted php frontend inside a container

All based on the same package and binaries, no need to
install and configure the package twice and keep both sides in

sync.

Docker install: before you start

Docker uses copy on write to allow the container to write in the
image without modifying it.
You'll need one of:

® The old AUFS union filesystem was never merged due to

code quality

® Device mapper or Device mapper loopback

® QverlayFS in recent kernels (3.18+)

® Btrfs (not very stable in older kernels)

More details on this RH blog: http://goo.gl/kUxTs5

http://goo.gl/kUxTs5

Install and setup time (on debian)

apt-get install -t testing docker.io
The following NEW packages will be installed:
aufs-tools cgroupfs-mount docker.io mountall plymouth
The following packages will be upgraded:
dmsetup libdevmapperl.02.1

=> bug in the package, you can remove mountall and plymouth

/usr/share/docker.io/contrib/check-config.sh
info: reading kernel config from /proc/config.gz

Generally Necessary:

cgroup hierarchy: properly mounted [/sys/fs/cgroup]
- CONFIG_NAMESPACES: enabled

- CONFIG _NET NS: enabled

- CONFIG PID NS: enabled

- CONFIG IPC NS: enabled

- CONFIG UTS NS: enabled

- CONFIG_DEVPTS MULTIPLE INSTANCES: enabled
- CONFIG_CGROUPS: enabled

- CONFIG_CGROUP_ CPUACCT: enabled

- CONFIG _CGROUP DEVICE: enabled

- CONFIG _CGROUP FREEZER: enabled

- CONFIG_CGROUP_SCHED: enabled

(...)

Install and setup time (2)

Make sure you do not have cgroup mounted as a single directory:
Filesystem Size Used Avail Use% Mounted on
cgroup 0 0 0 - /sys/fs/cgroup

This will cause docker to fail:

FATA[0000] Error response from daemon: Cannot start container
37b628£60d8d88aa47cb88199372d40£845e8acb73ed56343028£fd9cf5bce238: [8]
System error: write
/sys/fs/cgroup/docker/37b628£60d8d88aa47cb88199372d40£f845e8acb73ed563430
28fd9cf5bce238/cgroup.procs: no space left on device

Remove the /sys/fs/cgroup mount from /etc/fstab, and reboot (due to a
kernel bug, unmount is not enough). Then make sure you have this from
either the docker initscript or cgroupfs-mount:

mount |grep cgroup

cgroup on /sys/fs/cgroup type tmpfs (rw,relatime,size=12k)

cgroup on /sys/fs/cgroup/cpuset type cgroup

cgroup on /sys/fs/cgroup/cpu type cgroup

cgroup on /sys/fs/cgroup/cpuacct type cgroup

cgroup on /sys/fs/cgroup/memory type cgroup

cgroup on /sys/fs/cgroup/devices type cgroup

cgroup on /sys/fs/cgroup/freezer type cgroup

cgroup on /sys/fs/cgroup/net cls type cgroup

cgroup on /sys/fs/cgroup/blkio type cgroup

cgroup on /sys/fs/cgroup/perf event type cgroup

cgroup on /sys/fs/cgroup/net prio type cgroup

Install and setup time (3)

legolas:~# docker run -t --entrypoint bash debian -c "ls -al /; cat
/etc/debian version"

Unable to find image 'debian:latest' locally

latest: Pulling from debian

3cb35ae859e7: Pull complete

41b730702607: Already exists

debian:latest: The image you are pulling has been verified. Important:
image verification is a tech preview feature and should not be relied on
to provide security.

Digest:
sha256:5c8ab02dd3alfaa611adb36005087deb52452b1al7582cc63f7b57£9e91f5e12
Status: Downloaded newer image for debian:latest

total 0

drwxr-xr-x 1l root root 174 May 12 22:51

drwxr-xr-x 1l root root 174 May 12 22:51 ..
—rWXr-Xr-x 1 root root 0 May 12 22:51 .dockerenv
—IrWXYr-Xr-X 1 root root 0 May 12 22:51 .dockerinit
(«-.)

drwxr-xr-x 1l root root 0 Apr 28 23:52 srv
dr-xr-xr-x 13 root root 0 May 12 22:51 sys
drwxrwxrwt 1 root root 0 Apr 28 23:57 tmp
drwxr-xr-x 1 root root 70 Apr 28 23:52 usr
drwxr-xr-x 1 root root 90 Apr 28 23:52 var

8.0

Making your own super small base image

® Docker is not meant to be used to run a container entirely
from your host filesystem

® But it can be made to do so by giving it any image, and
mounting your host filesystem as directories on top of that
Image

® So let's start with the smallest docker image that doesn't
depend on outside code

® We'll use a single binary: sash (single user shell), but we

could have used busybox-static instead

Making my own base image

gargamel:~/docker base/ build# find

./bin

./bin/sash

./Dockerfile

gargamel:~/docker base/ build# cat Dockerfile
FROM scratch

COPY /bin/sash /bin/sash

#COPY /bin/busybox /bin/busybox

RUN ["/bin/sash", "-c", "-mkdir /root"]

RUN ["/bin/sash", "-c", "-mkdir /run"]
RUN ["/bin/sash", "-c", "-mkdir /run/lock"]
EXPOSE 80

CMD ["/bin/sash"]
gargamel:~/docker base/ build# docker build -t empty
Sending build context to Docker daemon 455.7 kB
Sending build context to Docker daemon

Step 0 : FROM scratch

-—--> 511136ea3cba

Step 1 : COPY /bin/sash /bin/sash

—-—-> d32464b3bc02
Removing intermediate container acb530e0c375
Step 2 : CMD /bin/sash

---> Running in 41dff2fb9acb

---> 3ee781c323da
Removing intermediate container 41dff2fbYacb
Successfully built 3ee781c323da

Looking at an empty image

gargamel:~# docker run -t -i empty
Stand-alone shell (version 3.8)
> -1s -1 /

drwxr-xr-x 1 0 0 88 May 12 23:47

drwxr-xr-x 1 0 0 88 May 12 23:47 ..
-rwxr-xr-x 1 0 0 0 May 12 23:47 .dockerenv
-rwxr-xr-x 1 0 0 0 May 12 23:47 .dockerinit
drwxr-xr-x 1 0 0 8 May 10 17:16 bin
drwxr-xr-x 5 0 0 380 May 12 23:47 dev
drwxr-xr-x 1 0 0 56 May 12 23:47 etc
dr-xr-xr-x583 0 0 0 May 12 23:47 proc
drwxr-xr-x 1 0 0 0 May 10 17:16 root
drwxr-xr-x 1 0 0 8 May 10 21:59 run
dr-xr-xr-x 13 0 0 0 May 10 17:33 sys

> -1s -1 /etc

drwxr-xr-x 1 0 0 56 May 12 23:47

drwxr-xr-x 1 0 0 88 May 12 23:47 ..
-rw-r--r-- 1 0 0 13 May 12 23:47 hostname
-rw-r--r-- 1 0 0 175 May 12 23:47 hosts
lrwxrwxrwx 1 0 0 12 May 12 23:47 mtab
-rw-r--r-- 1 0 0 87 May 12 23:47 resolv.conf
> -1s -1 /run

drwxr-xr-x 1 0 0 8 May 10 21:59

drwxr-xr-x 1 0 0 88 May 12 23:47 ..
drwxr-xr-x 1 0 0 0 May 10 21:59 lock

Looking at an empty image (2)

> -more /proc/mounts

/dev/mapper/cryptroot / btrfs rw,noatime,compress=1zo 0 0

proc /proc proc rw,nosuid,nodev,noexec,relatime 0 0

tmpfs /dev tmpfs rw,nosuid,mode=755 0 0

devpts /dev/pts devpts rw,nosuid,noexec,relatime,gid=5,mode=620, ptmxmode=666
shm /dev/shm tmpfs rw,nosuid,nodev,noexec,relatime,size=65536k 0 0
mgueue /dev/mgueue mgueue rw,nosuid,nodev,noexec,relatime 0 0

sysfs /sys sysfs ro,nosuid,nodev,noexec,relatime 0 0
/dev/mapper/cryptroot /etc/resolv.conf btrfs rw,noatime,compress=1zo 0 0
/dev/mapper/cryptroot /etc/hostname btrfs rw,noatime,compress=1zo 0 0
/dev/mapper/cryptroot /etc/hosts btrfs rw,noatime,compress=1zo 0 0
devpts /dev/console devpts rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000
proc /proc/asound proc ro,nosuid,nodev,noexec,relatime 0 0

proc /proc/bus proc ro,nosuid,nodev,noexec,relatime 0 0

proc /proc/fs proc ro,nosuid,nodev,noexec,relatime 0 0

proc /proc/irq proc ro,nosuid,nodev,noexec,relatime 0 0

proc /proc/sys proc ro,nosuid,nodev,noexec,relatime 0 0

proc /proc/sysrg-trigger proc ro,nosuid,nodev,noexec,relatime 0 0

tmpfs /proc/kcore tmpfs rw,nosuid,mode=755 0 0

tmpfs /proc/latency stats tmpfs rw,nosuid,mode=755 0 0

tmpfs /proc/timer stats tmpfs rw,nosuid,mode=755 0 0

Files automatically created by docker

Docker uses file bind mounts to add autogenerated
networking files in /etc

> -more /etc/resolv.conf

search svh.merlins.org merlins.org
nameserver 192.168.205.3
nameserver 192.168.205.254

> -more /etc/hostname

2flcfdcbc70c

> -more /etc/hosts

172.17.0.48 2flcfdcbc70c
127.0.0.1 localhost

::l localhost ip6-localhost ip6-loopback
fe00::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff02::1 ip6-allnodes

£f£f02::2 ip6-allrouters

N P O O

Mounting your base filesystem in docker

® Docker lets you mount your host filesystem inside of
your container.

® You can't mount /, but you can mount subdirectories

® Default mount is read-write, therefore unsafe

® | can now run bash (and my entire system) using
binaries from the host

® This works but only protects my local network,
process list, and host disk not mounted here

gargamel:~/docker base# docker run -v /:/ -i -t empty /bin/bash

docker: Invalid bind mount: destination can't be '/'. See 'docker run
--help'.

gargamel:~/docker base# docker run -v /tmp:/tmp -v /lib:/lib -v
/1ib64:/1ib64 -v /usr:/usr -v /var:/var -v /etc:/etc -v /bin:/bin -i -t
empty /bin/bash

deell43f0cld:/#

Mounting portions of your filesystem, read only

® The goal is to mount enough of your system for your
your programs to work in the containers
® As much should be mounted read only as possible

/bin/bash

(oo.)
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot
/dev/mapper/cryptroot

on
on
on
on
on
on
on
on
on
on

docker run -v /tmp:/tmp -v /lib:/lib:ro -v /lib64:/1ib64:ro -v
/usr:/usr:ro -v /var:/var -v /bin:/bin:ro -v /etc:/etc:ro -i -t empty

358076e71312: /usr# touch file
touch: cannot touch 'file': Read-only file system
358076e71312:/usr# mount

/etc/resolv.conf type btrfs (rw)
/etc/hostname type btrfs (rw)
/etc/hosts type btrfs (rw)

/bin type btrfs (ro)

/etc type btrfs (ro)

/1lib type btrfs (ro)

/1lib64 type btrfs (ro)

/tmp type btrfs (rw)

/usr type btrfs (ro)

/var type btrfs (rw)

Docker can't create mountpoints on read only mounts

Be careful when you make a custom read only
mountpoint with other mounts on top, to have the
mountpoints already created, since docker will not
be able to create them on a read only filesystem

D=/root/docker base; docker run -v $D/tmp:/tmp -v $D/lib:/lib:ro -v
SD/1ib64:/1ib64:ro -v $D/usr:/usr:ro -v $D/var:/var -v $D/bin:/bin:ro -v
$D/etc:/etc:ro -v /etc/apache2:/etc/apache2:ro -i -t debian /bin/bash

setup mount namespace creating new bind mount target mkdir
/var/lib/docker/devicemapper/mnt/el8389el25a58c4ee9004aal73116a4a44789b5
81f8d8al54ab3065427e38a5a/rootfs/etc/apache2: read-only file system
2015/04/26 18:53:43 Error response from daemon: Cannot start container
el18389el125a58c4ee9004aal73116a4a44789b581£8d8al54ab3065427e38a5a: setup
mount namespace creating new bind mount target mkdir
/var/lib/docker/devicemapper/mnt/el8389el25a58c4ee9004aal73116a4a44789b5
81f8d8al54ab3065427e38a5a/rootfs/etc/apache2: read-only file system

Not showing sub mounts

® |f you mount /usr in docker, it will also make /usr/local
(a separate filesystem) visible

® This is done by creating a separate FS tree with bind
mounts

® Bind mounts cannot be read-only if their source is
read-write, so we use -v /usr:/usr:ro in docker instead

legolas:~/docker base# for i in 1lib 1lib64 usr var bin; do
mkdir -p $i; mount -o bind /$i $i; done

D=/root/docker base; docker run -v $D/tmp:/tmp -v $D/lib:/lib:ro -v
$SD/1ib64:/1ib64:ro -v $D/usr:/usr:ro -v $D/var:/var -v $D/bin:/bin:ro -v
SD/etc:/etc:ro -i -t empty /bin/bash

Not showing all subdirectories

If you mount /var, you may want to shadow/hide /var/log on the
same filesystem

This is done on the host, not inside the container with lots of -v
[tmp:/var/log -v /tmp:/var/lib/dpkg since it would make the
docker command line very long

With D=/root/docker_base

Instead of running docker with “-v $D/var:/var -v /tmp:/var/log”
we run mount -o bind /tmp $D/var/log

And run docker with just “-v $D/var:/var”

Docker sees that tmp is mounted in $D/var/log and
automatically mounts it in your image

Unfortunately we cannot use mount -o bind,ro /tmp $D/var/log

Custom /etc

/etc is full of files you don't want to show, like private
keys, password shadow file, and more

You want to share a portion of /etc/ as read only files
We create $D/etc as an empty directory

We then hardlink all the files we want in /etc

Bind mount /etc/vim /etc/profile.d etc... in $D/etc/
mkdir $D/etc/apache?2

Mount container specific directories with docker -v
$D/etc/apache2:/etc/apache2:ro

This avoids leaking your apache config in a mysq|
container.

Custom /etc creation

® \We make a skeleton $D/etc directory

® Hardlink the files we want to expose from the base
system

® Because of docker -v $D/etc:/etc:ro, those files will
not be modifiable in the image.

cd /root/docker base
mkdir -p etc/init.d
for £ in etc/
{bash.bashrc,bash completion,bashrc,environment, hosts,inputrc,ld.so.cache
,ld.so.conf,localtime,magic,magic.mime,mailcap,mailcap.order,mime.types,n
sswitch.conf,profile,protocols,resolv.conf,rpc,shells,timezone,init.d/apa
che2}
do
ln -f /$f S$f
Done
Add files local to just this container:
cp -a etc local/* etc/

Putting it all together: before

/dev/mapper/cryptroot / btrfs rw

proc /proc proc rw

tmpfs /dev tmpfs rw

devpts /dev/pts devpts rw

shm /dev/shm tmpfs rw

mqueue /dev/mgueue mqueue rw

sysfs /sys sysfs ro

/dev/mapper/cryptroot /bin btrfs ro

/dev/mapper/cryptroot /etc btrfs ro

/dev/mapper/cryptroot /etc/vim btrfs rw

/dev/mapper/cryptroot /lib btrfs ro

/dev/mapper/cryptroot /lib64 btrfs ro

/dev/mapper/pooll /tmp btrfs rw

/dev/mapper/cryptroot /usr btrfs ro

/dev/mapper/cryptroot /var btrfs ro

/dev/mapper/pooll /var/change btrfs rw

/dev/mapper/pooll /var/local/nobck btrfs rw << bad, info leak
/dev/mapper/cryptroot /var/local/nobckd2 btrfs rw
/dev/mapper/pool2 /var/local/space btrfs rw
/dev/mapper/cryptroot /var/lib/docker/btrfs btrfs rw

""" very bad, read-write access to all docker instances
/dev/mapper/cryptroot /var/lib/docker/btrfs/subvolumes/XXX btrfs rw
proc /var/lib/docker/btrfs/subvolumes/XXX/proc proc rw

tmpfs /var/lib/docker/btrfs/subvolumes/XXX/dev tmpfs rw
devpts /var/lib/docker/btrfs/subvolumes/XXX/dev/pts devpts rw
shm /var/lib/docker/btrfs/subvolumes/XXX/dev/shm tmpfs rw

Putting it all together: before (2)

(o..

mqueue /var/lib/docker/btrfs/subvolumes/XXX/dev/mqueue mgueue rw

sysfs /var/lib/docker/btrfs/subvolumes/XXX/sys sysfs ro
/dev/mapper/cryptroot /var/lib/docker/btrfs/subvolumes/XXX/bin btrfs ro
/dev/mapper/cryptroot /var/lib/docker/btrfs/subvolumes/XXX/etc btrfs ro
/dev/mapper/cryptroot /var/lib/docker/btrfs/subvolumes/XXX/etc/vim btrfs rw
/dev/mapper/cryptroot /var/lib/docker/btrfs/subvolumes/XXX/lib btrfs ro
/dev/mapper/cryptroot /var/lib/docker/btrfs/subvolumes/XXX/1lib64 btrfs ro
/dev/mapper/pooll /var/lib/docker/btrfs/subvolumes/XXX/tmp btrfs rw
/dev/mapper/cryptroot /var/lib/docker/btrfs/subvolumes/XXX/usr btrfs ro
/dev/mapper/cryptroot /etc/resolv.conf btrfs rw

/dev/mapper/cryptroot /etc/hostname btrfs rw

/dev/mapper/cryptroot /etc/hosts btrfs rw

devpts /dev/console devpts rw

proc
proc
proc
proc
proc
proc

/proc/asound proc ro
/proc/bus proc ro

/proc/fs proc ro

/proc/irq proc ro

/proc/sys proc ro
/proc/sysrg-trigger proc ro

tmpfs /proc/kcore tmpfs rw
tmpfs /proc/latency stats tmpfs rw
tmpfs /proc/timer stats tmpfs rw

Putting it all together: after

/dev/mapper/cryptroot / btrfs rw

proc /proc proc rw

tmpfs /dev tmpfs rw

devpts /dev/pts devpts rw

shm /dev/shm tmpfs rw

mqueue /dev/mqueue mqueue rw

sysfs /sys sysfs ro

/dev/mapper/cryptroot /bin btrfs ro
/dev/mapper/cryptroot /etc btrfs ro
/dev/mapper/cryptroot /etc/vim btrfs rw << docker mounted with wrong perms (rw)
/dev/mapper/cryptroot /lib btrfs ro
/dev/mapper/cryptroot /1lib64 btrfs ro
/dev/mapper/cryptroot /tmp btrfs rw
/dev/mapper/cryptroot /usr btrfs ro
/dev/mapper/cryptroot /var btrfs ro
/dev/mapper/cryptroot /etc/resolv.conf btrfs rw
/dev/mapper/cryptroot /etc/hostname btrfs rw
/dev/mapper/cryptroot /etc/hosts btrfs rw
devpts /dev/console devpts rw

proc /proc/asound proc ro

proc /proc/bus proc ro

proc /proc/fs proc ro

proc /proc/irq proc ro

proc /proc/sys proc ro

proc /proc/sysrg-trigger proc ro

tmpfs /proc/kcore tmpfs rw

tmpfs /proc/latency stats tmpfs rw

tmpfs /proc/timer stats tmpfs rw

Fixing rw bind mounts automatically mounted in image

It's great to be able to have docker automatically
mount subdirectories of mount points

But you cannot control read-write bind mounts also
being mounted read-write in your image

Solution #1: mount a read only snapshot of those
directories in your $D tree (if you have read only
snapshots)

Solution #2: specify each mount on the docker
command line with -v $D/etc/vim:/etc/vim:ro
Solution #3: don't bind mount /etc/vim $D/etc/vim and
symlink hardlink the files instead

Every host mount mounted ro, including /var

® Make every host mount read only (including /var)

® The host's /var/log should be shadowed by mounting
another directory in that location

® You can hide other dirs like /var/backups /var/account,
/var/spool

® /var/run and /var/lock should be symlinked to /run if
they aren't already

® /var/tmp is likely not actually written to. You might not
even want a writeable /tmp in your container (it's used
by some rootkits).

Putting it all together: getting php5 of an installed app
working in your container, along with apache2

® | had to create /root which was missing from my
empty image and was causing errors about writing to

~/.bash_history
® | was missing /run and /run/lock that /var/run and

/var/locks are linked to on my host system

blcld226cdda:~# /etc/init.d/apache2 start

[FAIL] Starting web server: apache2 failed!

[warn] The apache2 configtest failed. ... (warning).
Output of config test was:

mkdir: cannot create directory '/var/run': File exists
mktemp: failed to create directory via template
'/var/lock/apache2.XXXXXXXXXX': No such file or directory

chmod: missing operand after '755'

Moving other session and locks to /run

® /run is part of your COW filesystem in the image, so it

gets automatically reset for you every time you restart
the image

® My php5 needed sessions moved to /run

gargamel:/var/lib/php5# ls -1d sessions
drwx-wx-wt 1 root root 0 May 10 15:39 sessions/
gargamel:/var/lib/php5# mv sessions /run; 1ln -s /run/sessions .

Now apache works, but not connections to mysql

® Thankfully no need to open ports and play routing
tricks

® Mysqgl can be accessed through a socket that can be
mounted in the container.

FATAL: Cannot connect to MySQL server on 'localhost'. Please make sure you
have specified a valid MySQL database name in 'include/config.php'

Could not connect to database: Can't connect to local MySQL server through
socket '/var/run/mysqld/mysgld.sock' (2)

gargamel:~# 1 /run/mysqld/

total 4

drwxr-xr-x 2 mysql root 80 May 5 08:15 ./
drwxr-xr-x 34 root root 1580 May 24 19:24 ../
-rw-rw---- 1 mysql mysql 6 May 5 08:15 mysqgld.pid
SIWXrwxrwx 1 mysql mysqgl 0 May 5 08:15 mysqgld.sock=

Simply run docker with -v /run/mysqld:/run/mysqld

Success!

Apache, mysql, and php webapps are installed and
working on the host system

Apache can be started in the container, using the
same files and same config

The backend of the php apps can be run on the host
system and access data not visible in the container
The unsafe php5 frontends are now run inside the
container and have no access or no write access to
the host system's resources

They access the data they serve through mysql or a
shared filesystem read-only to them.

Docker instance start script

grep $(pwd) /proc/mounts | awk '{ print $2 }' |xargs --no-run-if-empty umount

FIXME: unsafe, docker makes the etc/xxxXx directories writeable in the host.
for d in 1lib 1lib64 usr var bin sbin etc/
{alternatives,bash completion.d,mc,profile.d,vim}

do
mkdir -p $d
#mount -o bind,ro /$d $d will not work if the original dirs were rw
So instead we rely on the docker mount to be read only
grep $(pwd)/$d /proc/mounts || mount -o bind /$d $d
done

for £ in etc/

{bash.bashrc,bash completion,bashrc,environment,inputrc,ld.so.cache,ld.so.conf,localtime
,Mmagic,magic.mime,mailcap,mailcap.order,mime.types,nsswitch.conf,profile,protocols,resol

v.conf,rpc,shells,timezone,init.d/apache2}
do

rm ll$fll

ln /||$f|| ll$fll
done

Extra directories that aren't mounted here, but mapped by docker if needed by that

instance

They need to exist because etc is mounted ro and docker cannot create mount point

directories
for mp in etc/{ssl,apache2,php5,zm,cacti,phpmyadmin}
do
mkdir -p "Smp"
done

Docker instance start script (cont)

Directories to hide by mounting tmp on top of them
for hidedir in var/src var/backups var/account var/spool usr/local
do
grep -q $(pwd)/$hidedir /proc/mounts || mount -o bind tmp $hidedir
done

Local files separate from the host system's copies

Suggested list: fstab, group, hostname, hosts, passwd, shadow
cp -a etc_local/* etc/

Local directory which will get mounted under /var/log

mkdir -p local/log

D=/root/docker base; docker run -v $D/lib:/lib:ro -v $D/1lib64:/lib64:ro -v
$SD/usr:/usr:ro -v $D/var:/var:ro -v $D/bin:/bin:ro -v $D/sbin:/sbin:ro -v $D/etc:/etc:ro
-v $D/local/log:/var/log -v /etc/apache2:/etc/apache2:ro -v /etc/php5:/etc/php5:ro

-v /etc/phpmyadmin:/etc/phpmyadmin:ro -v /etc/ssl:/etc/ssl:ro -v
/etc/cacti:/etc/cacti:ro -v /var/lib/cacti:/var/lib/cacti:ro -v /etc/zm:/etc/zm:ro

-v /run/mysqld:/run/mysqld -p 80:80 -i -t --entrypoint /bin/bash empty -c
"/etc/init.d/apache2 start; /bin/bash"

Warnings

drs

& \
..._..
g
SS 4
Y
- ..ﬂ

A
ol i
r

GraphicProducts.com

™

B

Warnings

Direct mounting is very powerful

But also dangerous

Make sure you only expose what you need

And make everything read only outside of specific
directories like a custom /var/log and /tmp

You are losing the copy on write feature of docker for
every directory mounted from the host.

Anything written on a host mounted directory is
persistent, affects others containers, and the host.

Warnings about docker, btrfs, and backups

® |f you use COW snapshots, they likely won't get
properly backed up or restored.

® With btrfs, snapshots used by docker are difficult to
backup, btrfs doesn't allow backing up a filesystem
and all its subvolumes.

® But if you have an empty image you can recreate
from scratch, it's quicker than doing backups/restores
of your containers.

® Nothing gets stored in your container since you're
mounting the local disk, so it gets backed up along
with your host system.

Beware...

[CONFIG MANAGEMENT?!

J

WHHT IS THHI’ I:lll’lﬂ

Summary: Doing it the docker way

® Not using the native docker way of doing things
because it's hard to reproduce your app in a container
may mean that your configuration management is
lacking

® Doing it the docker way lets you know the minimal
bits required for your app and control exactly what
dependencies are available to your app

® The docker way lets your app be run on any host that
can run docker by only moving your docker file

Summary: Doing it the shared system way

® |f your system is hard to reproduce/dockerize, it's still
better to dockerize potentially unsafe front ends with
the shared disk way

® |t's great to have the same app hard to fully run in
container run inside and outside of the container
without running 2 separate copies maybe not in sync

® Some systems can benefit from sharing the same
system image between the host and container(s) for
disk and memory use

Thanks to Docker Maintainers and Contributors

® Docker is probably the best documented open source project
I've seen so far. It has nice tutorials and information cut in
pieces as you need it.

® While I'm not using Docker the way it was meant to be used,
it's flexible enough to be used in ways it wasn't meant for

® And more importantly, it makes LXC more accessible to all by

doing the work to get containers up and configured properly.

Gog%[e
BREMNBDEITH?

Questions?
Want a job at Google?

Talk slides for download:
http://marc.merlins.org/linux/talks/DockerLocalDisk-LC2015-JP/
http://goo.gl/PWjume

Marc MERLIN

marc_soft@merlins.org

http://marc.merlins.org/linux/talks/DockerLocalDisk-LC2015-JP/
http://goo.gl/PWjume

